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Section A: Pure Mathematics

1 (i) Sketch the curve y =
√
1− x+

√
3 + x .

Use your sketch to show that only one real value of x satisfies

√
1− x+

√
3 + x = x+ 1 ,

and give this value.

(ii) Determine graphically the number of real values of x that satisfy

2
√
1− x =

√
3 + x+

√
3− x .

Solve this equation.

2 Write down the cubes of the integers 1, 2, . . . , 10 .

The positive integers x, y and z, where x < y, satisfy

x3 + y3 = kz3 , (∗)

where k is a given positive integer.

(i) In the case x+ y = k, show that

z3 = k2 − 3kx+ 3x2 .

Deduce that (4z3 − k2)/3 is a perfect square and that 1
4k

2 6 z3 < k2 .

Use these results to find a solution of (∗) when k = 20.

(ii) By considering the case x+ y = z2, find two solutions of (∗) when k = 19.
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3 In this question, you may assume without proof that any function f for which f ′(x) > 0 is
increasing; that is, f(x2) > f(x1) if x2 > x1 .

(i) (a) Let f(x) = sinx− x cosx. Show that f(x) is increasing for 0 6 x 6 1
2π and deduce

that f(x) > 0 for 0 6 x 6 1
2π .

(b) Given that
d

dx
(arcsinx) > 1 for 0 6 x < 1, show that

arcsinx > x (0 6 x < 1).

(c) Let g(x) = x cosecx for 0 < x < 1
2π. Show that g is increasing and deduce that

(arcsinx)x−1 > x cosecx (0 < x < 1).

(ii) Given that
d

dx
(arctanx) 6 1 for x > 0, show by considering the function x−1 tanx that

(tanx)(arctanx) > x2 (0 < x < 1
2π).

4 (i) Find all the values of θ, in the range 0◦ < θ < 180◦, for which cos θ = sin 4θ. Hence
show that

sin 18◦ =
1

4

(√
5− 1

)
.

(ii) Given that
4 sin2 x+ 1 = 4 sin2 2x ,

find all possible values of sinx , giving your answers in the form p+ q
√
5 where p and q

are rational numbers.

(iii) Hence find two values of α with 0◦ < α < 90◦ for which

sin2 3α+ sin2 5α = sin2 6α .
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5 The points A and B have position vectors a and b with respect to an origin O, and O, A and B
are non-collinear. The point C, with position vector c, is the reflection of B in the line through
O and A. Show that c can be written in the form

c = λa− b

where λ =
2a.b

a.a
.

The point D, with position vector d, is the reflection of C in the line through O and B. Show
that d can be written in the form

d = µb− λa

for some scalar µ to be determined.

Given that A, B and D are collinear, find the relationship between λ and µ. In the case
λ = −1

2 , determine the cosine of ∠AOB and describe the relative positions of A, B and D.

6 For any given function f, let

I =

∫
[f ′(x)]2 [f(x)]ndx , (∗)

where n is a positive integer. Show that, if f(x) satisfies f ′′(x) = kf(x)f ′(x) for some constant
k, then (∗) can be integrated to obtain an expression for I in terms of f(x), f ′(x), k and n.

(i) Verify your result in the case f(x) = tanx . Hence find∫
sin4 x

cos8 x
dx .

(ii) Find ∫
sec2 x (secx+ tanx)6 dx .
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7 The two sequences a0, a1, a2, . . . and b0, b1, b2, . . . have general terms

an = λn + µn and bn = λn − µn ,

respectively, where λ = 1 +
√
2 and µ = 1−

√
2 .

(i) Show that

n∑
r=0

br = −
√
2 +

1√
2
an+1 , and give a corresponding result for

n∑
r=0

ar .

(ii) Show that, if n is odd,
2n∑

m=0

(
m∑
r=0

ar

)
= 1

2b
2
n+1 ,

and give a corresponding result when n is even.

(iii) Show that, if n is even, (
n∑

r=0

ar

)2

−
n∑

r=0

a2r+1 = 2 ,

and give a corresponding result when n is odd.

5
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8 The end A of an inextensible string AB of length π is attached to a point on the circumference
of a fixed circle of unit radius and centre O. Initially the string is straight and tangent to the
circle. The string is then wrapped round the circle until the end B comes into contact with
the circle. The string remains taut during the motion, so that a section of the string is in
contact with the circumference and the remaining section is straight.

Taking O to be the origin of cartesian coordinates with A at (−1, 0) and B initially at (−1, π),
show that the curve described by B is given parametrically by

x = cos t+ t sin t , y = sin t− t cos t ,

where t is the angle shown in the diagram.

A

By

x
t

O

Find the value, t0, of t for which x takes its maximum value on the curve, and sketch the
curve.

Use the area integral

∫
y
dx

dt
dt to find the area between the curve and the x axis for π > t > t0.

Find the area swept out by the string (that is, the area between the curve described by B and
the semicircle shown in the diagram).
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Section B: Mechanics

9 Two particles, A of mass 2m and B of mass m, are moving towards each other in a straight
line on a smooth horizontal plane, with speeds 2u and u respectively. They collide directly.
Given that the coefficient of restitution between the particles is e, where 0 < e 6 1, determine
the speeds of the particles after the collision.

After the collision, B collides directly with a smooth vertical wall, rebounding and then
colliding directly with A for a second time. The coefficient of restitution between B and the
wall is f , where 0 < f 6 1. Show that the velocity of B after its second collision with A is

2
3(1− e2)u− 1

3(1− 4e2)fu

towards the wall and that B moves towards (not away from) the wall for all values of e and f .

10 A particle is projected from a point on a horizontal plane, at speed u and at an angle θ above
the horizontal. Let H be the maximum height of the particle above the plane. Derive an
expression for H in terms of u, g and θ.

A particle P is projected from a point O on a smooth horizontal plane, at speed u and at an
angle θ above the horizontal. At the same instant, a second particle R is projected horizontally
from O in such a way that R is vertically below P in the ensuing motion. A light inextensible
string of length 1

2H connects P and R. Show that the time that elapses before the string
becomes taut is

(
√
2− 1)

√
H/g .

When the string becomes taut, R leaves the plane, the string remaining taut. Given that P
and R have equal masses, determine the total horizontal distance, D, travelled by R from the
moment its motion begins to the moment it lands on the plane again, giving your answer in
terms of u, g and θ.

Given that D = H, find the value of tan θ.
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11 Three non-collinear points A, B and C lie in a horizontal ceiling. A particle P of weight W
is suspended from this ceiling by means of three light inextensible strings AP , BP and CP ,
as shown in the diagram. The point O lies vertically above P in the ceiling.

A

B

C

P

O

���
���
���

���
���
���

The angles AOB and AOC are 90◦ + θ and 90◦ + φ, respectively, where θ and φ are acute
angles such that tan θ =

√
2 and tanφ = 1

4

√
2.

The strings AP , BP and CP make angles 30◦, 90◦−θ and 60◦, respectively, with the vertical,
and the tensions in these strings have magnitudes T , U and V respectively.

(i) Show that the unit vector in the direction PB can be written in the form

−1

3
i−

√
2

3
j+

√
2√
3
k ,

where i , j and k are the usual mutually perpendicular unit vectors with j parallel to
OA and k vertically upwards.

(ii) Find expressions in vector form for the forces acting on P .

(iii) Show that U =
√
6V and find T , U and V in terms of W .
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Section C: Probability and Statistics

12 Xavier and Younis are playing a match. The match consists of a series of games and each
game consists of three points.

Xavier has probability p and Younis has probability 1 − p of winning the first point of any
game. In the second and third points of each game, the player who won the previous point
has probability p and the player who lost the previous point has probability 1− p of winning
the point. If a player wins two consecutive points in a single game, the match ends and that
player has won; otherwise the match continues with another game.

(i) Let w be the probability that Younis wins the match. Show that, for p 6= 0,

w =
1− p2

2− p
.

Show that w > 1
2 if p < 1

2 , and w < 1
2 if p > 1

2 . Does w increase whenever p decreases?

(ii) If Xavier wins the match, Younis gives him £1; if Younis wins the match, Xavier gives
him £k. Find the value of k for which the game is fair in the case when p = 2

3 .

(iii) What happens when p = 0?

9
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13 What property of a distribution is measured by its skewness?

(i) One measure of skewness, γ, is given by

γ =
E
(
(X − µ)3

)
σ3

,

where µ and σ2 are the mean and variance of the random variable X. Show that

γ =
E(X3)− 3µσ2 − µ3

σ3
.

The continuous random variable X has probability density function f where

f(x) =

2x for 0 6 x 6 1 ,

0 otherwise .

Show that for this distribution γ = −2
√
2

5
.

(ii) The decile skewness, D, of a distribution is defined by

D =
F−1( 9

10)− 2F−1(12) + F−1( 1
10)

F−1( 9
10)− F−1( 1

10)
,

where F−1 is the inverse of the cumulative distribution function. Show that, for the
above distribution, D = 2−

√
5 .

The Pearson skewness, P , of a distribution is defined by

P =
3(µ−M)

σ
,

where M is the median. Find P for the above distribution and show that D > P > γ .
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